Discussion of: Dynamic Hierarchial Factor Models

Emanuel Moench Serena Ng Simon Potter

by Christopher Otrok
Motivation

Summary

• A useful new entrant into the large scale factor literature
• This class of models used for many applications
 ▶ Documenting the extent and nature of comovement in large panels (countries, states, industries)
 ▶ Forecasting (semi-parsimonious use of lots of data)
 ▶ Measuring the state of the economy (in the spirit of Stock and Watson (1989))
• The application of this paper is to monitor the state of the economy
 ▶ Structure allows for some interpretation of what is driving the economy (e.g. Housing)
 ▶ Structure allows for updating of state of economy as data are released
• A very nicely done paper with state of the art econometric modelling
Summary

- A useful new entrant into the large scale factor literature
- This class of models used for many applications
 - Documenting the extent and nature of comovement in large panels (countries, states, industries)
 - Forecasting (semi-parsimonious use of lots of data)
 - Measuring the state of the economy (in the spirit of Stock and Watson (1989))
- The application of this paper is to monitor the state of the economy
 - Structure allows for some interpretation of what is driving the economy (e.g. Housing)
 - Structure allows for updating of state of economy as data are released
- A very nicely done paper with state of the art econometric modelling
Modelling Contribution

- In principal one could estimate the following factor model
 \[Y_t = B_t(L)F_t + \epsilon_t \]
 \hspace{1cm}(1) \]

- where \(Y \) is \(N \times 1 \), \(B \) a \(N \times M \) time varying matrix lag polynomial, \(F \) a \(M \times 1 \) vector of factors
- \(E(\epsilon_t\epsilon_t') = \Omega \)
- For large \(N \) and \(T \) the likelihood function is hard to deal with
- The literature has worked with various restricted version of this model
 - allow for limited correlation in errors, work out asymptotics
 - allow for some parameter instability, work out asymptotics
 - often these approaches allow variables to load on all factors
- This paper uses a parameteric approach to estimation
 - impose various restrictions on the parameters (zero, symmetry)
 - try to find a clever blocking strategy to break the problem into smaller feasible ones
 - A new parameter reduction is used here: impose the hierarchical structure
Modelling Contribution

- In principal one could estimate the following factor model
 \[Y_t = B_t(L)F_t + \epsilon_t \]
 (1)

- where \(Y \) is \(N \times 1 \), \(B \) a \(N \times M \) time varying matrix lag polynomial, \(F \) a \(M \times 1 \) vector of factors
- \(\mathbb{E}(\epsilon_t\epsilon_t')=\Omega \)
- For large \(N \) and \(T \) the likelihood function is hard to deal with
- The literature has worked with various restricted version of this model
 - allow for limited correlation in errors, work out asymptotics
 - allow for some parameter instability, work out asymptotics
 - often these approaches allow variables to load on all factors

- This paper uses a parameteric approach to estimation
 - impose various restrictions on the parameters (zero, symmetry)
 - try to find a clever blocking strategy to break the problem into smaller feasible ones
 - A new parameter reduction is used here: impose the hierarchical structure
Modelling Contribution

- In principal one could estimate the following factor model
 \[Y_t = B_t(L)F_t + \epsilon_t \]
 \[\text{(1)} \]

- where \(Y \) is \(N \times 1 \), \(B \) a \(N \times M \) time varying matrix lag polynomial, \(F \) a \(M \times 1 \) vector of factors

- \(E(\epsilon_t\epsilon'_t) = \Omega \)

- For large \(N \) and \(T \) the likelihood function is hard to deal with

- The literature has worked with various restricted version of this model
 - allow for limited correlation in errors, work out asymptotics
 - allow for some parameter instability, work out asymptotics
 - often these approaches allow variables to load on all factors

- This paper uses a parameteric approach to estimation
 - impose various restrictions on the parameters (zero, symmetry)
 - try to find a clever blocking strategy to break the problem into smaller feasible ones
 - A new parameter reduction is used here: impose the hierarchial structure
This paper

- **one novelty: emphasis on separate blocks**
 - Similar in some ways to Kose Otrok Whiteman (2003): zero restrictions to identify regional blocks
 - let some variables load on only some factors
 - factors then interpreted as 'labor market factor' etc.

- This paper does this in a parsimonous way that leads to an efficient algorithm

- The hierarchical structure means that we start with factor for sub-blocks
 - then higher level factors are estimated off of these factors
 - we don’t have to estimate a factor on a large set of data
 - asymptotics not needed

- Advantage over KOW: measure of the state of entire block (perhaps the Euro area)

- Advantage of KOW: Is there a Euro business cycle?

- Economic analysis versus economic measurement
This paper

- one novelty: emphasis on separate blocks
 - Similar in some ways to Kose Otrok Whiteman (2003): zero restrictions to identify regional blocks
 - let some variables load on only some factors
 - factors then interpreted as 'labor market factor' etc.

- This paper does this in a parsimonous way that leads to an efficient algorithm

- The hierarchial structure means that we start with factor for sub-blocks
 - then higher level factors are estimated off of these factors
 - we don’t have to estimate a factor on a large set of data
 - asymptotics not needed

- Advantage over KOW: measure of the state of entire block (perhaps the Euro area)

- Advantage of KOW: Is there a Euro business cycle?

- Economic analysis versus economic measurement
What this paper does

This paper

- one novelty: emphasis on separate blocks
 - Similar in some ways to Kose Otrok Whiteman (2003): zero restrictions to identify regional blocks
 - let some variables load on only some factors
 - factors then interpreted as 'labor market factor' etc.

- This paper does this in a parsimonious way that leads to an efficient algorithm

- The hirerarchial structure means that we start with factor for sub-blocks
 - then higher level factors are estimated off of these factors
 - we don’t have to estimate a factor on a large set of data
 - asymptotics not needed

- Advantage over KOW: measure of the state of entire block (perhaps the Euro area)

- Advantage of KOW: Is there a Euro business cycle?

- Economic analysis versus economic measurement
Some comments

- In principle model has lots of flexibility
 - Lagged factors
 - multiple factors per block
 - all of this is possible in the KOW framework, but leads to a proliferation of parameters
 - in practice don't find many second factors for common factors, use few lags
Some comments

- In principle model has lots of flexibility
 - Lagged factors
 - multiple factors per block
 - all of this is possible in the KOW framework, but leads to a proliferation of parameters
 - in practice don’t find many second factors for common factors, use few lags
Some comments

- Parsimony is achieved with restrictions on parameter values
 - Response to common factor restricted to be identical within a block
 - Why do labor market variables have the same response to the common factor?
 - The estimate factor is essentially a weighted average of the data with weights given by factor loadings
 - What if a bunch of variables should have 0 loadings?
 - Why not test this on smaller scale versions of the model?

- Some variables within a block are given a factor loading of 1
 - If two people use the same model will we get the same result?
 - Which variable is given the big weight probably matters
Some comments

- Parsimony is achieved with restrictions on parameter values
 - Response to common factor restricted to be identical within a block
 - Why do labor market variables have the same response to the common factor?
 - The estimate factor is essentially a weighted average of the data with weights given by factor loadings
 - What if a bunch of variables should have 0 loadings?
 - Why not test this on smaller scale versions of the model?

- Some variables within a block are given a factor loading of 1
 - If two people use the same model will we get the same result?
 - Which variable is given the big weight probably matters
What this paper does

Housing Activity

Figure 6: Monitoring Housing Activity in a Four Level Model with 5 Blocks and 14 Subblocks

G_4: Housing

Continuous update

Monthly update

Note: This figure plots the continuous update of the block-specific factor \hat{G}_b for the Housing block from our four level model, obtained whenever there is a new release in any of the three subblocks Housing Starts, New Home Sales or Existing Home Sales, along with the update of the factor obtained with a full new set of observations at the end of each month.
What this paper does

Housing Data

![Graph showing the number of units completed, for-sale, under construction, and started in different periods.]
Housing Data

![Graph showing Housing Data](image-url)
Model Specification

- Specification: Assumption is block structure is correct
 - ""standard model ignores block structure"
 - ""Instead of imposing a possibly invalid structure ..."" (on weak correlation in errors)
 - A priori no reason to think one assumption is better than the other
- Correct specification may be block with subblocks of 'demand' and 'output'
- Problem: large number of possible permutations
Model Specification

- Specification: Assumption is block structure is correct
 - "standard model ignores block structure"
 - "Instead of imposing a possibly invalid structure ..." (on weak correlation in errors)
 - A priori no reason to think one assumption is better than the other
- Correct specification may be block with subblocks of 'demand' and 'output'
- Problem: large number of possible permutations
More Comments

- Uncertainty in recession? why just point estimates?
- How is a measure of things sold a measure of demand?
- Forecasting performance (is this really better than other large N and T methods?)
- Compare real time updates with ex-post estimates of economic state
- Would permutations of the model lead to different estimates of the state of the economy?
Conclusion

- Valuable contribution to large scale factor literature
- A new approach to parameters reduction
- Valuable real time updates of state of economy
- Seems to have promise in forecasting literature