On the advantages of disaggregated data:
Insights from forecasting the U.S. economy in a data-rich environment

Nikita Perevalov and Philipp Maier *

KC Fed Workshop on Central Bank Forecasting

Discussant: Philip Liu†

International Monetary Fund
pliu@imf.org

October 15, 2010

*Presenter: Nikita Perevalov, Bank of Canada.
†Discussant: Western Hemisphere Department, IMF.
The big picture

What the paper do:

- Evaluate the forecasting performance of factor models for the U.S.
- Study out-of-sample forecast accuracy at disaggregate levels

\[X_{i,t+h} = \gamma(L)X_{i,t} + \beta(L)F_t + \epsilon_{i,t+h} \]

useful?? min. (1)

- Compare direct forecasts vs restricted (national accounting) forecasts
Summary of the key results

- Factor models are better relative to AR for more volatile components
 - AR generally projects like a RW, in particular for volatile series (good with C but not at X or I)
 - Factor models use more information than AR
 - Evaluation period include the crisis (factor model outperforms around turning points)

- Restricted forecasts suffer or there was little improvements over direct forecasts
 - Positive forecast errors in subcomponents
 - Forecast errors at higher level of aggregation generally “cancel” each other out
General comments

- The paper is well motivated and contributes to the forecasting literature
- Improvements using factor models maybe overstated (around 40% improvement for Q+1)
- How can we produce more accurate GDP forecasts?
Use real-time data

- In real-time, factor models will have less data to work with

- The paper appears to assume a balance panel, timing of information flow plays a critical role for real time application

<table>
<thead>
<tr>
<th>Nowcast</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>Forecast +1Q</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR RMSE</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>AR RMSE</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>Paper</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Paper</td>
<td>2.78</td>
<td>2.78</td>
<td>2.78</td>
</tr>
<tr>
<td>DFM RMSE</td>
<td>1.7</td>
<td>2.0</td>
<td>1.8</td>
<td>DFM RMSE</td>
<td>2.2</td>
<td>2.4</td>
<td>2.2</td>
</tr>
<tr>
<td>DFM/AR</td>
<td>0.65</td>
<td>0.77</td>
<td>0.70</td>
<td>DFM/AR</td>
<td>0.81</td>
<td>0.89</td>
<td>0.81</td>
</tr>
<tr>
<td>Paper</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Paper</td>
<td>0.61</td>
<td>0.53</td>
<td>0.66</td>
</tr>
</tbody>
</table>

- If real-time vintages are not available, a couple of suggestions to construct quasi real time data (but still ignores data revisions)

 ▶️ The HAVER database records the date when the series was first released
Look at the recent data release calendar, impose this over the evaluation period

Forecast combination

- Factor models (extra information) work well for volatile components
- AR models (RW feature) work well for with consumption
- Does combining component forecasts help improve overall GDP forecast?
 - Use RMSEs to weight across different models
 - Combine the forecast of individual components
 - Expand the set of models: Bridge-equations, BVARs etc
• Pre-crisis forecast performance (relative to AR’s) of statistical models are generally pretty bad, what would be the forecast performance if the post-2008 data was excluded?

• Clarify how the weights in the restricted forecasts are constructed and applied, does it change over time?

• The DFM uses 3 factors, would be useful to include more/less (Bai and Ng 2002 type selection criteria) as robustness check.

• A bit more details on the design of the forecast experiment, cut-off for data, timing etc.